

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 90 Min			
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :			

Paragraph for Q. 121 to 123

The nodal gases have closed-shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other interactions.

The direct reaction of xenon with fluorine leads to a series of compounds with oxidation numbers +2, +4 and +6. XeF₄ reacts violently with water to give XeO₃. The compounds of xenon exhibit rich stereochemistry and their geometries can be deduced considering the total number of electron pairs in the valence shell.

121.	Argon is used in arc welding because of its :										
	(A) low reactivity with metal(C) flammability				(B)	ability to lower the melting points of meta					
					(D)	high calorific value					
122.	The str	ucture of XeO ₃	is:						(2007)		
	(A)	linear	(B)	planar	(C)	pyramidal	(D)	T-shaped			
123.	• XeF ₄ and XeF ₆ are excepted to be :								(2007)		
	(A)	oxidising	(B)	reducing	(C)	strongly basic	(D)	None of these			
For Q.	124 to 1	125									
(A) (B) (C) (D)	Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 Statement-1 is True, Statement-2 is False Statement-1 is False, Statement-2 is True										
124.	Statement-1: In water, orthoboric acid behaves as a weak monobasic acid. Statemant-2: In water, orthoboric acid and acts as a proton donor. (2007)										
125.	Statem	ent-1: Boron	ı always f	orms covalent	bond.						
	Statem	ant-2: The s	mall size	of B ³⁺ favours	formation	of covalent bon	d.		(2007)		
126.	Aqueou	s solution of N	la ₂ S ₂ O ₃ (on reaction wit	h Cl ₂ give	es:			(2008)		
	(A)	$\mathrm{Na_2S_4O_6}$	(B)	${\it NaHSO}_4$	(C)	NaCl	(D)	NaOH			

Paragraph for Q. 127 to 129

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization easily explains the case of sigma donation capability of NH_3 and PH_3 . Phosphine is flammable gas and is prepared from white phosphorus.

127. Among the following, the correct statement is: (2008)
(A) Phosphates have no biological significance in humans
(B) Between nitrates and phosphates, phosphates are less abundant in earth's crust
(C) Between nitrate and phosphates, nitrates are less abundant in earth's crust
(D) Oxidation of nitrates is possible in soil

128.	Among	g the following, t	he correc	et state	ment is :					((2008)
	(A)	Between NH ₃	and PH	3, NH ₃	is a b	etter ele	ctron don	or because	the lone	pair o	f electrons
		occupies spherical 's' orbital and is less directional									
	(B)	Between NH ₃	and PH	3, PH ₃	is a be	etter ele	ctron done	or because	the lone	pair o	f electrons
		occupies spherical sp^3 orbital and is more directional									
	(C)	Between NH ₃	and PH	3, NH ₃	is a b	etter ele	ctron don	or because	the lone	pair o	f electrons
	occupies spherical ${ m sp}^3$ orbital and is more directional										
	(D)	Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair								pair o	f electrons
		occupies spherical 's' orbital and is less directional									
129.	White	White phosphorus on reaction with NaOH gives PH ₃ as one of the products. This is a: (2008)									
	(A)	dimerization r				(B)		rtionation r			
	(C)	condensation	reaction			(D)	precipita	ite reaction			
130.	A solu	ition of colourle	ss salt H	I on bo	oiling wi	th exces	s NaOH p	eoduces a r	non-flamm	able ga	s. The gas
	evolut	ion ceases after	sometin	ne. Up	on addi	tion of 2	Zn dust to	the same	solution,	the ga	s evolution
	restart	ts. The colourles	s salt(s) l	H is/ar	e:					((2008)
	(A)	NH_4NO_3	(B)	NH_4N	NO_2	(C)	NH ₄ Cl	(D)	(NH ₄)	$_2$ SO $_4$	
131.	Stater	nent-1: Pb ⁴⁺	compour	nds are	stronger	oxidisir	ng agents tl	nan Sn ⁴⁺ c	ompounds		
	Stater	nant-2: The h	igher oxi	dation	states f	or the g	roup 14 el	ements are	more stab	ole for	the heavier
	members of the group due to 'inert pair effect'. (200								(2008)		
	(A)	Statement-1 is	s True, S	tatemei	nt-2 is T	rue; Stat	ement-2 is	a correct ex	planation	for Sta	tement-1
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct Statement-1							t expla	nation for			
	(C)	Statement-1 is	s True, St	tatemer	nt-2 is Fa	alse					
	(D)	Statement-1 is False, Statement-2 is True									
132.	The re	reaction of P_4 with X leads selectively to P_4O_6 . The X is:								(2009)	
	(A)	${\rm dry}\ {\rm O}_2$				(B)	a mixtu				
	(C)	moist O_2					${ m O_2}$ in th				
133.	The nitrogen oxide(s) that contain(s) N – N bond(s) is(are) :										(2009)
	(A)	N_2O	(B)	N_2O_3		(C)	N_2O_4	(D)	N_2O_5		
134.	Match	each of the reac	ctions giv	en in c	olumn-I	with the	correspon	ding produc	t(s) given i	n colun	nn-II.
		Column-I					Column	-II			(2009)
	(A)	(A) $Cu + dil. HNO_3$ (B) $Cu + conc. HNO_3$			(p)	NO	NO				
	(B)				(q)	NO_2					
	(C)	C) $Zn + dil. HNO_3$				(r)	N_2O				
	(D)	$Zn + conc. HNO_3$				(s)	Cu(NO ₃	$)_2$			
						(t)	$Zn(NO_3$	$)_2$			
135.	The co	ordination num	ber of Al	in the o	erystallin	ne state o	of AlCl ₃ is	:			(2009)

JEE Advanced (Archive) 122 DTS-9 | p-Block Elements-II